Abstract

The hydraulic locking sleeve is a key component of precision instruments such as five-axis machine tools, giant astronomical telescope, and satellite antenna. This is subjected to the action of pressure load causing large elastic deformation and locking the rotational freedom of feed shaft at any angle. The maximum locking torque is an important parameter for designing the hydraulic locking sleeve. First, the hydraulic locking sleeve is simplified as elastic thin cylindrical shell structure. Neglecting the bending and twisting effects, the calculation equations describing the deformation and stress state between the hydraulic locking sleeve and rotary shaft are derived by applying the theory of elastic thin shell. Then, taking into account that one end of the hydraulic lock sleeve is fixed to the shaft sleeve seat by the end face flange; the calculating formula of the maximum locking torque of the hydraulic locking sleeve is obtained by modifying the deformation equation based on moment model. Finally, a test platform of hydraulic locking sleeve is designed, which can measure the maximum locking torque of the hydraulic locking sleeve. The error between the calculation result of locking torque theoretical calculation model and the experimental measured value is <15%. As a result, the causes of the error are analyzed, and the effects of the shaft sleeve length, wall thickness, and radius on the maximum locking torque are calculated.

Highlights

  • Five-axis computer numerical control machine tools consist of three linear feed shafts and two rotary feed shafts

  • Hydraulic locking sleeve will generate a large elastic deformation under the action of liquid pressure, and the rotary shaft can be locked at any angle

  • The hydraulic locking sleeve is simplified as elastic thin cylindrical shell structure

Read more

Summary

Introduction

Five-axis computer numerical control machine tools consist of three linear feed shafts and two rotary feed shafts.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.