Abstract

The deceleration lane is an important part of the freeway, and the rationality of its design parameters affects the exit accident rate. The traditional calculation method is based on the design of speed and vehicle parameters using deterministic methods, ignoring the randomness of the driver’s deceleration behavior. It is necessary to calculate the length and slope of the deceleration lane in detail according to the deceleration characteristics of the driver in the deceleration section by using the uncertainty method. This paper describes a study on the maximum longitudinal slope of the downhill section of the deceleration lane, where the safety of diverging vehicles is unfavorable. By collecting deceleration lane data from interchanges around Xi’an (Shaanxi Province, China, Coordinates: 108.95, 34.27) and analyzing the deceleration characteristics of vehicles, we propose a new deceleration model. In addition, the limit-state functions of the length and slope of the deceleration lane have been established based on the reliability theory. Finally, according to the deceleration characteristics, we determined the probability distribution of key parameters in the vehicle deceleration process. We used the Monte Carlo Simulation (MCS) and the Improved First-Order Second Moments (IFOSM) calculation model to calculate the length and slope of the deceleration lane, respectively. Finally, we propose the recommended values for the length and slope of the deceleration lane. The results of the study showed that: (1) The movement process of the vehicle on the deceleration section adopts a uniform deceleration, and the truck and the car start to decelerate from the starting of the taper section and diverging point, respectively. (2) The control vehicle in the deceleration lane calculation model is the compact car. (3) The reliability theory has good applicability in calculating freeway alignment indexes. It fully considers the probability of driver deceleration behavior in the calculation model, which provides a more suitable method for the calculation of deceleration lane indexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.