Abstract

The high cycle fatigue behaviour of autoclave-cured carbon fibre-reinforced polymer (CFRP) composite gears is investigated. The CFRP gears were milled from a composite plate and tested in mesh with a steel drive gear under five torque loads ranging between 0.4 and 0.8 Nm in unlubricated conditions. A detailed gear damage analysis is conducted by employing scanning electron microscopy and high-resolution optical microscopy. Epoxy matrix microcracking is found to be the damage mechanism that leads to the final delamination failure. CFRP gears exhibited a significantly improved performance and a longer fatigue lifespan in comparison with the polymer and polymer composite gears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.