Abstract

Coal pillar retention plays a crucial role in ensuring safety and minimizing ground deformation in coal mining operations. However, accurately and efficiently determining the optimal size of protective pillars, reducing coal pillar pressure, and addressing challenges such as limited access to retention parameters, lengthy observation times, and high labor costs are challenges that must be addressed. In this paper, we presented a methodology using Huainan mine as a case study to address these challenges. The solution involves deriving the formula for coal pillar retention parameters based on the Three Regulations definition and requirements. The total least squares algorithm was integrated with surface observation station data and the MATLAB software platform to automate the coal pillar retention solution. Furthermore, a linear regression model of coal pillar retention-related parameters was established using the geological mining condition data. The proposed ELM neural network model was optimized using a genetic algorithm and combined with the linear regression model to establish a predictive model. The results demonstrated that the proposed machine learning algorithm attains the requisite level of accuracy for industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call