Abstract
This contribution explores the use of the computationally efficient, chemically-oriented INDO electronic structure model (ZINDO) in concert with perturbation theory to relate molecular quadratic hyperpolarizabilities to molecular architecture and electronic structure in transition metal chromophores. The ZINDO-derived second-order nonlinear optical responses are found to be in excellent agreement with the experiment for a variety of ferrocenyl and (arene)chromium tricarbonyl derivatives
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.