Abstract

With increased turbogenerator capacity and electromagnetic load, overheating of the complex end parts has become one of the main problems affecting safe and stable turbogenerator operation. In this research, a flow network was built representing the structural and ventilation characteristics of a 330-MW turbogenerator. The fan inlet velocity and pressures (boundary conditions) of each end-region outlet were obtained by the flow network method. The 3-D transient electromagnetic field in the turbogenerator end was calculated, and the eddy current losses (heat sources) of the end parts were obtained by the finite-element method. To study the surface heat-transfer coefficient distribution on the stator-end winding surface, fluid and thermal mathematical and geometric models of the whole turbogenerator end region were given. Using the finite-volume method, the surface heat-transfer coefficient distribution on the complex 3-D stator-end winding surface, fluid-flow distribution, and temperature distribution of the end parts were investigated under rated-load conditions. The calculated temperature results match well with measured data. This research can provide a theoretical basis for calculating the heat-transfer coefficients of the outer surfaces of large turbogenerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.