Abstract

The analysis of NMR spin-spin coupling leads to a unique insight into the electronic structure of closed-shell molecules, provided one is able to decode the different features of the spin-spin coupling mechanism. For this purpose, the physics of spin-spin coupling is described and the way how spin-spin coupling constants (SSCCs) can be quantum mechanically determined. Based on this insight, a set of requirements is derived that guide the development of a quantum mechanical analysis of spin-spin coupling. It is demonstrated that the J-OC-PSP (=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization) analysis method fulfills all requirements. J-OC-PSP makes it possible to partition the isotropic indirect SSCC J or its reduced analogue K as well as the four Ramsey terms (Fermi contact (FC), spin dipole (SD), diamagnetic spin orbit (DSO), paramagnetic spin orbit (PSO)) leading to J (or K) into Cartesian components (for the anisotropic Ramsey terms SD, DSO, PSO), orbital contributions or electron interaction terms. For the purpose of decoding the spin-spin coupling mechanism, FC, SD, DSO, and PSO coupling is discussed in detail and related to electronic and bonding features of the molecules in question. The myth of empirical and semiempirical relationships between SSCCs and bonding features is unveiled. It is found that most relationships are only of limited, partly dubious value, often arising from a fortuitous cancellation of terms that cannot be expected in general. These relationships are replaced by quantum chemical relations and descriptions that directly reflect the complex electronic processes leading to spin-spin coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call