Abstract

Sound relaxational absorption spectroscopy of excitable gas mixtures is potentially applied for gas composition detection. The relaxation of vibrational modes of gas molecules determines the sound relaxational absorption. However, to our knowledge, the contribution of each vibrational mode available in gas mixtures to sound multi-relaxation absorption has not been calculated in existing literature. In this paper, based on the decoupled expression of the effective isochoric molar heat for a gas mixture, a sound multi-relaxation absorption spectrum is decomposed into the sum of single-relaxation spectra. From this decomposable characteristic, the contribution of each vibrational mode available in the gaseous medium to the multi-relaxation absorption is obtained at room temperature. For various gas compositions including carbon dioxide, methane, nitrogen etc., the calculated contributions of vibrational modes are verified by the comparison with experiment data. We prove the following views with quantifiable outcomes that the primary molecular relaxation process associated with the lowest mode plays the major role in acoustic relaxational absorption of gas mixtures; the mode with lower vibrational frequency provides higher contribution to the primary relaxation process. This work could provide a deeper insight into the relationship between the sound relaxational absorption spectroscopy and gas molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.