Abstract

The modeling and interpretation of vibrational spectra are crucial for studying reaction dynamics using vibrational spectroscopy. Most prior theoretical developments focused on describing fundamental vibrational transitions while fewer developments focused on vibrational excited state absorptions. In this study, we present a new method that uses excited state constrained minimized energy surfaces (CMESs) to describe vibrational excited state absorptions. The excited state CMESs are obtained similarly to the previous ground state CMES development in our group but with additional wave function orthogonality constraints. Using a series of model systems, including the harmonic oscillator, Morse potential, double-well potential, quartic potential, and two-dimensional anharmonic potential, we demonstrate that this new procedure provides good estimations of the transition frequencies for vibrational excited state absorptions. These results are significantly better than those obtained from harmonic approximations using conventional potential energy surfaces, demonstrating the promise of excited state CMES-based methods for calculating vibrational excited state absorptions in real systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.