Abstract

The role played by interfaces in metallic multilayers is not only to change the momenta of incident electrons; their symmetry lowering also results in an enhancement of the effects of spin-orbit coupling, in particular the flipping of the spins of conduction electrons. This leads to a significant reduction of a spin current through a metallic interface that is quantitatively characterized by a dimensionless parameter $\delta$ called the spin memory loss (SML) parameter, the interface counterpart of the spin-flip diffusion length for bulk metals. In this paper we use first-principles scattering calculations that include temperature-induced lattice and spin disorder to systematically study three parameters that govern spin transport through metallic interfaces of Cu with Pt, Pd, Py (permalloy) and Co: the interface resistance, spin polarization and the SML. The value of $\delta$ for a Cu$|$Pt interface is found to be comparable to what we recently reported for a Au$|$Pt interface [Gupta {\it et al.}, Phys. Rev. Lett. 124, 087702 (2020)]. For Cu$|$Py and Cu$|$Co interfaces, $\delta$ decreases monotonically with increasing temperature to become negligibly small at room temperature. The calculated results are in good agreement with currently available experimental values in the literature. Inserting a Cu layer between Pt and the Py or Co layers slightly increases the total spin current dissipation at these "compound" interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.