Abstract
We apply our extended Kirkwood-Riseman theory to compute the translation, rotation, and coupling friction tensors and the scalar rotational friction coefficient for an aerosol fractal aggregate in the transition flow regime. The method can be used for particles consisting of spheres in contact. Our approach considers only the linear velocity of the primary spheres in a rotating aggregate and ignores rotational and coupling interactions between spheres. We show that this simplified approach is within approximately 40% of the true value for any particle for Knudsen numbers between 0.01 and 100. The method is especially accurate (i.e., within about 5%) near the free-molecule regime, where there is little interaction between the particle and the flow field, and for particles with low fractal dimension (≲2) consisting of many spheres, where the average distance between spheres is large and translational interaction effects dominate. Our results suggest that there is a universal relationship between the rotational friction coefficient and an aggregate Knudsen number, defined as the ratio of continuum to free-molecule rotational friction coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.