Abstract

One problem of the quantitative description of small fatigue crack propagation is the fluctuating crack growth rate induced by obstacles like grain or phase boundaries. Sometimes cracks stop completely for a large number of cycles sometimes cracks only decelerate, both resulting in an additional number of life time cycles. However, so far it is not clear, what actually determines the resistance of a grain boundary against fatigue cracks. Therefore we investigate small crack propagation through grain boundaries systematically by in-situ imaging in the scanning electron microscope and focused ion beam (FIB) crack initiation. By this unique technique, artificial stage I cracks with constant crack parameters can be observed while interacting with different grain boundaries which gives detailed information on the interaction mechanisms. We identified different useful aspects of the interaction between microcracks and microstructural barriers on the microscopic scale. 3D-tomographs revealed by serial sectioning and FIB give information about the transition process from the initial grain to the neighbouring one. The resulting purely geometrical consideration leads to a quantitative description of the blocking effect of grain boundaries and can be used to calculate the probability of a crack transfer from the orientation data of two neighboring grains only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.