Abstract
Tilt-to-length (TTL) noise from angular jitter in LISA is projected to be the dominant noise source in the milli-Hertz band unless corrected in post-processing. The correction is only possible after removing the overwhelming laser phase noise using time-delay interferometry (TDI). We present here a frequency domain model that describes the effect of angular motion of all three spacecraft on the interferometric signals after propagating through TDI. We then apply a Fisher information matrix analysis to this model to calculate the minimum uncertainty with which TTL coupling coefficients may be estimated. Furthermore, we show the impact of these uncertainties on the residual TTL noise in the gravitational wave readout channel, and compare it to the impact of the angular witness sensors' readout noise. We show that the residual TTL noise post-subtraction in the TDI variables for a case using the LISA angular jitter requirement and integration time of one day is limited to the $8\text{ }\text{ }\mathrm{pm}/\sqrt{\mathrm{Hz}}$ level by angular sensing noise. However, using a more realistic model for the angular jitter we find that the TTL coupling uncertainties are 70 times larger, and the noise subtraction is limited by these uncertainties to the $14\text{ }\text{ }\mathrm{pm}/\sqrt{\mathrm{Hz}}$ level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.