Abstract

In this document, using a minisuperspace model, in the WdW equation we come up with an evaluation as to an equation which could fit a specialized set of boundary conditions for bounds to early universe vacuum energy. In addition, using the arguments of Golgov, as of a 1989 Moriond Astrophysics meeting of that date we ascertain the probability vacuum energy, as re-written as the cosmological constant, could lead to the production of a “baby” universe. The number, N, of that supposition is then analyzed in detail. This in turn has a relationship to a non-linear B field contribution in early universe cosmology whose consequences are explored and delineated. If there is a multiverse, the graviton mass is non-zero. Through arguments given in the document, the scale factor is also then, non-zero, which also portends to having the graviton not equal to zero if there is a corresponding initial non-linear B field, in the set up of the multiverse cosmology. If the Graviton has zero mass, this corresponds to a single repeating universe, with different morphology.

Highlights

  • In this document, using a minisuperspace model, in the WdW equation we come up with an evaluation as to an equation which could fit a specialized set of boundary conditions for bounds to early universe vacuum energy

  • Through arguments given in the document, the scale factor is non-zero, which portends to having the graviton not equal to zero if there is a corresponding initial non-linear B field, in the set up of the multiverse cosmology

  • In the follow up, issues pertaining to [5] [6] will be alluded to, as to minimum uncertainty relations, and ways to understand uncertainty in time, as part of the time evolution, as far as emergent gravity is concerned. This is important, since if a minimum non-zero scale factor exists, as Beckwith asserts, by [7] there is from the beginning a balance between variation in time of the energy given in a given three volume, V, and the flux of this energy through the boundary 2 surface, of this volume to consider, which inevitably leads to refining the notion of time and the WdW equation as given in [8]

Read more

Summary

Introduction

Through arguments given in the document, the scale factor is non-zero, which portends to having the graviton not equal to zero if there is a corresponding initial non-linear B field, in the set up of the multiverse cosmology. The connection to early universe as given is to make use of the massive graviton mass value [15] of

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.