Abstract

We discuss a method for calculating free energy differences between disordered and ordered phases of self-assembling systems utilizing computer simulations. Applying an external, ordering field, we impose a predefined structure onto the fluid in the disordered phase. The structure in the presence of the external, ordering field closely mimics the structure of the ordered phase (in the absence of an ordering field). Self-consistent field theory or density functional theory provides an accurate estimate for choosing the strength of the ordering field. Subsequently, we gradually switch off the external, ordering field and, in turn, increase the control parameter that drives the self-assembly. The free energy difference along this reversible path connecting the disordered and the ordered state is obtained via thermodynamic integration or expanded ensemble simulation techniques. Utilizing Single-Chain-in-Mean-Field simulations of a symmetric diblock copolymer melt we illustrate the method and calculate the free energy difference between the disordered phase and the lamellar structure at an intermediate incompatibility chiN=20. Evidence for the first-order character of the order-disorder transition at fixed volume is presented. The transition is located at chi(ODT)N=13.65+/-0.10 for an invariant degree of polymerization of N=14 884. The magnitude of the shift of the transition from the mean field prediction qualitatively agrees with other simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.