Abstract

Steel–concrete composite columns are used extensively in modern buildings in recent decades due to the benefits of combining two construction materials: reinforced concrete is inexpensive, massive, and stiff, while steel members are strong, lightweight, and easy to assemble. For concrete-encased composite structural members, an additional advantage is that the concrete used for encasing a structural steel not only increases its stiffness, but also protects it from fire damage and local buckling failure. Traditionally, the fire resistance of composite structural members has been determined in standard fire tests, with the temperature-time curves representing more severe heating conditions compared to that which occurs in many typical natural fire compartments. To design a concrete encased H-section steel structure safely and economically, it is necessary to calculate temperature distribution in composite steel-concrete columns under natural fire. In this paper, the program TFIELD written by first author is used to calculate the temperature distribution in a concrete encased H-section steel column under natural fire and ISO 834 fire. The calculating results under the standard ISO 834 fire and a natural fire have been compared which exhibit obvious differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.