Abstract

This paper proposes a noniterative approach to calculate steady-state operating conditions of doubly fed induction generator (DFIG)-based wind turbines. The proposed approach can be applied to calculate steady-state operating conditions for the full-order dynamic model of DFIG-based wind turbines under d–q reference frame. Lossy DFIG back-to-back converters can be well supported, and nonzero reactive power delivery through DFIG grid-side converters can be handled. This noniterative approach encounters no convergence issues, which guarantees fast computation speed. It provides analytical solutions to the steady-state operating conditions of DFIG-based wind turbines. The proposed method could potentially be applied to obtain steady-state operating conditions before performing eigenvalue analysis and electromagnetic simulations for wind farms. Simulations performed on a single-machine-infinite-bus test system and a multibus test system verify the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.