Abstract

Since the 1990's, use of mobile phones has augmented worldwide generating a public concern as to whether frequent utilization of such devices is unsafe. This provoked EMF researchers to find suitable techniques of assessing radiation blueprint and exposure hazards if any. Most research groups focused on two techniques: experimental measurements and finite-difference time-domain (FDTD) computations. Computation of the specific absorption rate (SAR) generated by cellular phones inside two models of the human head is presented in this paper. Two models of mobile phones were considered working at 900 and 1800MHz bands according to the Global System for Mobile Communication. Radiated energy distributions and averaged SAR values in 1g and 10g of tissue were computed inside the models of head using FDTD. Computations were compared with a realistic head model constructed with the MRI scans. The distribution of the local SAR in the head was similar to that of the simplified head models. The maximum local SAR calculated was 53.43W/kg and the maximum SAR(10g) was 2.96W/kg, both for 1W output power from the antenna. The results indicated the area of the maximum local SAR was situated in outer layer of skull, where muscle and skin were. The important parameters in absorbed energy in the head were the type of antenna, current distribution and the distance between head and antenna. The head models used for simulation proved as insignificant parameter in the calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call