Abstract

Knowledge of particle deposition is relevant in biomedical engineering situations such as computational modeling of aerosols in the lungs and blood particles in diseased arteries. To determine particle deposition distributions, one must track particles through the flow field, and compute each particle's distance to the wall as it approaches the geometric surface. For complex geometries, unstructured tetrahedral grids are a powerful tool for discretizing the model, but they complicate the particle-to-wall distance calculation, especially when non-linear mesh elements are used. In this paper, a general algorithm for finding minimum particle-to-wall distances in complex geometries constructed from unstructured tetrahedral grids will be presented. The algorithm is validated with a three-dimensional 90° bend geometry, and a comparison in accuracy is made between the use of linear and quadratic tetrahedral elements to calculate the minimum particle-to-wall distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.