Abstract

The variational quantum eigensolver (VQE) is an algorithm to find eigenenergies and eigenstates of systems in quantum chemistry and quantum many-body physics. The VQE is one of the most promising applications of near-term quantum devices to investigate such systems. Here we propose an extension of the VQE to calculate the nonadiabatic couplings of molecules in quantum chemical systems and Berry's phase in quantum many-body systems. Both quantities play an important role to understand the properties of a system beyond the naive adiabatic picture, e.g., nonadiabatic dynamics and topological phase of matter. We provide quantum circuits and classical post-processings to calculate the nonadiabatic couplings and Berry's phase. Specifically, we show that the evaluation of the nonadiabatic couplings reduces to that of expectation values of observables while that of Berry's phase also requires one additional Hadamard test. Furthermore, we simulate the photodissociation dynamics of a lithium fluoride molecule using the nonadiabatic couplings evaluated on a real quantum device. Our proposal widens the applicability of the VQE and the possibility of near-term quantum devices to study molecules and quantum many-body systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.