Abstract

Adding atomized liquid to air flowing around a cylinder gives an appreciable increase in heat transfer by forming a liquid film on the cylinder surface. The heat transfer coefficient depends upon the amount of liquid forming the film, which is limited by two phenomena: droplet deflection from the liquid film on the surface and droplets not striking the cylinder. This paper presents a method of calculating the quantity of liquid droplets settling on a cylinder surface in a gas-liquid spray flow. A coefficient k , the volume ratio of the liquid entering the film to the amount of liquid directed at the cylinder, is introduced. k values were calculated by means of numerical computation and the theory verified experimentally. The calculation method permits estimation of the dependence of the amount of liquid settling on a cylinder on the droplet diameter distribution parameters and on the linear gas velocity

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.