Abstract
We introduce an efficient and numerically stable technique to make use of a BCS trial wave function in the computation of correlation functions of strongly correlated quantum fermion systems. The technique is applicable to any projection approach involving paths of independent-fermion propagators, for example in mean-field or auxiliary-field quantum Monte Carlo (AFQMC) calculations. Within AFQMC, in the absence of the sign problem, the methodology allows the use of a BCS reference state which can greatly reduce the required imaginary time of projection, and improves Monte Carlo sampling efficiency and statistical accuracy for systems where pairing correlations are important. When the sign problem is present, the approach provides a powerful generalization of the constrained-path AFQMC technique which usually uses Slater determinant trial wave functions. As a demonstration of the capability of the methodology, we present benchmark results for the attractive Hubbard model, both spin-balanced (no sign problem) and with a finite spin polarization (with sign problem).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.