Abstract
A recently developed integral technique is applied to natural convection cooling along test reactor fuel plates. The technique is demonstrated for water and air flow. In the case of air flow, the process is characterized by a large temperature rise along the fuel channel, thereby rendering the commonly applied Boussinesq approximation invalid. This case is a heat transfer problem of particular interest in accident analyses such as determining the level of decay heat dissipation possible, without exceeding the melting temperature of the fuel, subsequent to a hypothetical loss of primary coolant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.