Abstract

Let T be a square matrix with a real spectrum, and let f be an analytic function. The problem of the approximate calculation of f(T) is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that T is triangular and its diagonal entries tii are arranged in increasing order. To avoid calculations using the differences tii − tjj with close (including equal) tii and tjj, it is proposed to represent T in a block form and calculate the two main block diagonals using interpolating polynomials. The rest of the f(T) entries can be calculated using the Parlett recurrence algorithm. It is also proposed to perform some scalar operations (such as the building of interpolating polynomials) with an enlarged number of significant decimal digits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.