Abstract

An I(a) mechanism was assigned for water exchange on the hexaaquaions Rh(OH(2))(6)(3+) and Ir(OH(2))(6)(3+) on the basis of negative Delta V(++) experimental values (-4.2 and -5.7 cm(3) mol(-1), respectively). The use of Delta V(++) as a mechanistic criterion was open to debate primarily because Delta V(++) could be affected by extension or compression of the nonparticipating ligand bond lengths on going to the transition state of an exchange process. In this paper, volume and energy profiles for two distinct water exchange mechanisms (D and I(a)) have been computed using quantum chemical calculations which include hydration effects. The activation energy for Ir(OH(2))(6)(3+) is 32.2 kJ mol(-1) in favor of the I(a) mechanism (127.9 kJ mol(-1)), as opposed to a D pathway; the value for the I(a) mechanism being close to Delta H(++) and Delta G(++) experimental values (130.5 kJ mol(-1) and 129.9 kJ mol(-1) at 298 K, respectively). Volumes of activation, computed using Connolly surfaces and for the I(a) pathway (DeltaV(++)(calc) = -3.9 and -3.5 cm(3) mol(-1), respectively, for Rh(3+) and Ir(3+)), are in agreement with the experimental values. Further, it is demonstrated for both mechanisms that the contribution to the volume of activation due to the changes in bond lengths between Ir(III) and the spectator water molecules is negligible: -1.8 for the D, and -0.9 cm(3) mol(-1) for I(a) mechanism. This finding clarifies the debate about the interpretation of Delta V(++) and unequivocally confirms the occurrence of an I(a) mechanism with retention of configuration and a small a character for both Rh(III) and Ir(III) hexaaquaions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.