Abstract

On the basis of first-principles electronic structure calculations, crystallographic parameters have been refined for calcium hydroxozincate (Qatranaite mineral), and the vibration properties (frequencies and eigenvectors) calculated. A detailed analysis of vibration modes is done, in the context of comparison with infrared and Raman spectra previously available. Special attention is paid to a posteriori symmetry analysis of vibration modes, discussing the latters’ attribution to four irreducible representations of the P21/c space group, and to identifying stretchings and bendings of particular chemical bonds, pronounced in different vibrations. It turns out that high-frequency (>700cm−1) vibrations of hydroxyl groups bridging the Ca or Zn cations differ quite considerably for crystallographically distinct hydroxyl positions. It is shown that the vibrations involving hydroxyl groups and crystalline water typically come about in quadruplets at very close frequencies, whereby different irreducible representations reflect different combinations of similar “molecular” vibrations of four identical entities (of each hydroxyl or water) present in the unit cell. However, some vibrations show exceptions from this rule. In addition to interpretation of earlier experimental investigations, our study indicates that the low-frequency (<700cm−1) vibrations within the cation–hydroxyl connected skeleton are of more “solid-state-like” character and cannot be reasonably interpreted in terms of “molecular” vibrations within ZnO4 or CaO6 units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call