Abstract

Abstract The spin-lattice relaxation time T1 in 103Ru has been determined on the basis of the Dirac theory and strict relativistic band structure calculations. The low temperature relaxation time T(of 103Ru in an axially symmetric quadrupole field and the quadrupole moment Q have been measured by Green and Stone using the technique of low temperature quadrupole orientation. For the usual reference value T1 T, which corresponds to relaxation in a Zeeman spectrum, they obtain 39(6) sK, which exceeds our value by 134%. This large discrepancy is attributed to the fact that the spin relaxation by direct quadrupole scattering of conduction electrons, the so-called Mitchell contribution, is dominant. According to our calculations it amounts to 81% of the total relaxation rate. This contribution could not be included in the evaluation of the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call