Abstract
Volatile sulfur compounds play a crucial role in the aroma profile of food and fermented beverages. We explore chemical-ionization mass spectrometry (CI-MS) ion-molecule reaction kinetics of commonly used reagent ions to a list of volatile organic sulfur compounds (VOSCs). We compute the rate coefficients of ion-molecule reactions, useful for the accurate identification and quantification of trace gases, using capture collision models based on the electric dipole moment and polarizability of the neutral VOSCs. To this aim, we evaluate molecular properties, such as the electric dipole moment, polarizability, proton affinity (PA), and ionization energy (IE) for each VOSC, by means of hybrid density functional theory (DFT) simulations. The PA and IE values are useful in the selection of appropriate reagent ions to be used in CI-MS. We thoroughly investigate collision rate coefficients at effective temperatures and internal energies, as relevant for highly energetic proton transfer reaction mass spectrometry (PTR-MS) drift tube conditions. The data provided will be valuable for the rapid quantification of VOSCs in food and fermented beverages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.