Abstract

Using the potential‐induced breathing model, we calculate the pressure and temperature dependence of the thermoelastic properties of MgO. These calculations represent the first attempt to obtain a consistent set of thermodynamic elastic moduli for an oxide from an ab initio model over a wide range of pressure and temperature. By assuming the quasi‐harmonic approximation for the free energies, we find excellent agreement between the temperature dependence of calculated elastic moduli and those obtained from experiments. Comparison of the calculated athermal and isothermal elastic moduli shows approximations using athermal values to be unreliable at high temperature. The elastic moduli for MgO are presented for pressures and temperatures appropriate for the lower mantle, a regime in which elastic moduli cannot be obtained by direct measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.