Abstract
Cardiac mitochondrial Ca(2+) overload plays a critical role in mechanical and electrical dysfunction leading to cardiac cell death and fatal arrhythmia. Because Ca(2+) overload is related to mitochondrial permeability transition, reactive oxygen species (ROS) production and membrane potential (ΔΨm) dissipation, we probed the mechanistic association between Ca(2+) overload, oxidative stress, mitochondrial permeability transition pore (mPTP) and mitochondrial calcium uniporter (MCU) in isolated cardiac mitochondria. Various concentrations of Ca(2+) (5-200 μM) were used to induce mitochondrial dysfunction. Cyclosporin A (CsA, an mPTP blocker) and Ru360 (an MCU blocker) were used to test its protective effects on Ca(2+)-induced mitochondrial dysfunction. High concentrations of Ca(2+) (≥100 μM) caused overt mitochondrial swelling and ΔΨm collapse. However, only slight increases in ROS production were detected. Blocking the MCU by Ru360 is less effective in protecting mitochondrial dysfunction. A dominant cause of Ca(2+)-induced cardiac mitochondrial dysfunction was mediated through the mPTP rather than MCU. Therefore, CsA could be more effective than Ru360 in preventing Ca(2+)-induced cardiac mitochondrial dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.