Abstract

Calcium-induced calcium release (CICR) is a mechanism by which local elevations of intracellular calcium (Ca2+) are amplified by Ca2+ release from ryanodine-sensitive Ca2+ stores. CICR is known to be coupled to Ca2+ entry in skeletal muscle, cardiac muscle, and peripheral neurons, but no evidence suggests that such coupling occurs in central neurons during the firing of action potentials. Using fast Ca2+ imaging in CA1 neurons from hippocampal slices, we found evidence for CICR during action potential-evoked Ca2+ transients. A low concentration of caffeine enhanced Ca2+ transient amplitude, whereas a higher concentration reduced it. Simultaneous Ca2+ imaging and whole-cell recordings showed that membrane potential, action potential amplitude, and waveform were unchanged during caffeine application. The enhancement of Ca2+ transients by caffeine was not affected by the L-type channel blocker nifedipine, the phosphodiesterase inhibitor IBMX, the adenylyl cyclase activator forskolin, or the PKA antagonist H-89. However, thapsigargin or ryanodine, which both empty intracellular Ca2+ stores, occluded this effect. In addition, thapsigargin, ryanodine, and cyclopiazonic acid reduced action potential-evoked Ca2+ transients in the absence of caffeine. These results suggest that Ca2+ release from ryanodine-sensitive stores contributes to Ca2+ signals triggered by action potentials in CA1 neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call