Abstract

TMB-8 [8-(NN-diethylamino)-octyl-3,4,5-trimethoxybenzoate] blocks agonist-stimulated release of Ca2+ from intracellular sites in many cell lines and is often used to distinguish between dependence on extracellular and intracellular Ca2+. In N1E-115 neuroblastoma cells, TMB-8 did not alter the resting cytosolic Ca2+ concentration in unstimulated cells, yet phospholipid metabolism was greatly affected. At concentrations of TMB-8 (25-150 microM) that inhibit Ca2+ release, phosphatidylcholine formation was inhibited, whereas synthesis of phosphatidylinositol, phosphatidylglycerol and phosphatidylserine was stimulated. Unlike other cationic amphipathic compounds, TMB-8 did not inhibit phosphatidate phosphatase or enzymes in the pathway from choline to phosphatidylcholine. Choline transport was the major site of action. TMB-8 was a competitive inhibitor (Ki = 10 microM) of low-affinity (Kt = 20 microM) choline transport. When added at the same time as labelled precursor, TMB-8 also decreased cellular uptake of phosphate and inositol, but not that of ethanolamine or serine. In prelabelled cells, continued uptake and incorporation of phosphate and inositol were not affected. Under these conditions phosphatidylinositol synthesis was increased 2-fold and, like the effect on phosphatidylcholine, reached a plateau at 100 microM-TMB-8. Phosphatidylglycerol synthesis increased linearly with TMB-8 concentration to 40-fold stimulation at 150 microM, suggesting a selective effect on synthesis of phosphatidylglycerol from CDP-diacylglycerol. Phosphatidylserine synthesis was also increased up to 3-fold. These Ca(2+)-independent effects limit the use of TMB-8 in studies of cell signalling that involve stimulated phosphatidylinositol and phosphatidylcholine metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.