Abstract

Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca2+ affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate4− (ATP4−) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2’(3′)-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration–dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for orthosteric ligand agonists, but not antagonists, and not by affecting the permeability dynamics directly or indirectly through Panx1 channels. We expect these results to generalize to other P2XRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.