Abstract
The Notch signaling pathway plays a crucial role in the regulation of cell fate decision, and is also a key regulator of cell differentiation, including bone homeostasis, in a variety of contexts. However, the role of Notch1 signaling in osteoclast differentiation is still controversial. In this study, we show that Receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation is promoted by the Notch1 intracellular domain (Notch1-IC) and Ca2+/Calmodulin dependent protein kinase IV (CaMKIV) signaling. Notch1-IC protein level was augmented by CaMKIV through escape from ubiquitin dependent protein degradation. In addition, CaMKIV remarkably increased Notch1-IC stability, and the kinase activity of CaMKIV was essential for facilitating Notch1 signaling. CaMKIV directly interacted with Notch1-IC and phosphorylates Notch1-IC, thereby decreasing proteasomal protein degradation through F-box and WD repeat domain-containing 7 (Fbw7). We also found that Notch1-IC prevented inhibition of osteoclast differentiation by KN-93 but not the phosphorylation deficient form of Notch1-IC. These results suggest that phosphorylated Notch1-IC by CaMKIV increases Notch1-IC stability, which enhances osteoclast differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.