Abstract

The role of NO in the regulation of the mechanical properties of conduit arteries is controversial in humans, and the involvement of an endothelium-derived hyperpolarizing factor (EDHF), acting through calcium-activated potassium (KCa) channels, has never been investigated at this level in vivo. We assessed in healthy volunteers, after oral administration of aspirin (500 mg), the effect of local infusion of NG-monomethyl-L-arginine (L-NMMA; 8 mumol/min for 8 minutes), an NO synthase inhibitor, tetraethylammonium chloride (TEA; 9 mumol/min for 8 minutes), a KCa channels inhibitor, and the combination of both on radial artery internal diameter, wall thickness (echo tracking), blood flow (Doppler), and pressure. The incremental elastic modulus and compliance were fitted as functions of midwall stress. L-NMMA decreased modulus and increased compliance at high levels of midwall stress (all P<0.05) without affecting radial diameter. TEA reduced radial diameter from 2.68+/-0.07 to 2.50+/-0.08 10(-3) m, increased the modulus, and decreased the compliance at all levels of stress (all P<0.05). Combination of both inhibitors synergistically enhanced the increase in modulus, the decrease in diameter (from 2.71+/-0.10 to 2.42+/-0.09 10(-3) m), and compliance compared with TEA alone (all P<0.05). These results confirm that inhibition of NO synthesis is associated with a paradoxical isometric smooth muscle relaxation of the radial artery. They demonstrate the involvement of KCa channels in the regulation of the mechanical properties of peripheral conduit arteries, supporting a role for EDHF at this level in vivo. Moreover, the synergistic effect of l-NMMA and TEA shows that KCa channels compensate for the loss of NO synthesis to maintain peripheral conduit artery diameter and mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.