Abstract
We present a Green's function-based perturbative approach to solving nonlinear reaction-diffusion problems in networks of endothelial cells. We focus on a single component (Ca2+), piecewise nonlinear model of endoplasmic calcium dynamics and trans-membrane diffusion. The decoupling between nonlinear reaction dynamics and the linear diffusion enables the calculation of the diffusion part of the Green's function for network of cells with nontrivial topologies. We verify analytically and then numerically that our approach leads to the known transition from propagation of calcium front to failure of propagation when the diffusion rate is varied relative to the reaction rates. We then derive the Green's function for a semi-infinite chain of cells with various boundary conditions. We show that the calcium dynamics of cells in the vicinity of the end of the semi-infinite chain is strongly dependent on the boundary conditions. The behavior of the semi-infinite chain with absorbing boundary conditions, a simple model of a multicellular structure with an end in contact with the extracellular matrix, suggests behavioral differentiation between cells at the end and cells embedded within the chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.