Abstract

Ca 2+ transport and respiratory characteristics of two preparations of cardiac mitochondria (Palmer, J.W., Tandler, B. and Hoppel, C.L. (1977) J. Biol. Chem. 252, 8731–8739) isolated using polytron homogenization (subsarcolemmal mitochondria) and limited Nagarse exposure (intermyofibrillar mitochondria) are described. The Nagarse procedure yields mitochondria with 50% higher rates of oxidative phosphorylation than the polytron-prepared mitochondria in both rat and dog. Rat hear intermyofibrillar mitochondria contain 50% more cytochrome aa 3 than the polytron preparation, whereas in the dog, cytochrome aa 3 content is not significantly different. Cytochrome oxidase activities and cytochrome c, c 1 and b contents were comparable in both populations of rat and dog heart mitochondria. The V of succinate-supported Ca 2+ accumulation for Nagarse-prepared mitochondria from rat heart was 1.8-fold higher than the polytron-prepared mitochondria. In dog heart, the Nagarse preparation showed a 3.0-fold higher V for Ca 2+ uptake compared to the polytron preparation. A lower apparent affinity for Ca 2+ was demonstrated in the intermyofibrillar mitochondria for both species ( K m is 2–2.5-fold higher). The Hill coefficient was 1 both mitochondrial types. Subsarcolemmal mitochondria from both species were treated with Nagarse to determine the role of this treatment on the observed differences. Nagarse did not alter any kinetic parameter of Ca 2+ uptake. The properties of these mitochondria with reference to their presumed intracellular location may pertain to the role of mitochondria as an intracellular Ca 2+ buffering mechanism in contractile tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.