Abstract

BackgroundAwad et al. [1] reported on the Ca2+-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. In the present study, the combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca2+ solutions.Methodology/Principal FindingsUnder static conditions and the in absence of the divalent cations, the DOPG/MO system forms large vesicles composed of weakly correlated bilayers with a d-spacing of ∼140 Å (Lα-phase). The utilization of a stopped-flow apparatus allowed mixing these DOPG/MO vesicles with a solution of Ca2+ ions within 10 milliseconds (ms). In such a way the dynamics of negatively charged PG to divalent cation interactions, and the kinetics of the induced structural transitions were studied. Ca2+ ions have a very strong impact on the lipidic nanostructures. Intriguingly, already at low salt concentrations (DOPG/Ca2+>2), Ca2+ ions trigger the transformation from bilayers to monolayer nanotubes (inverted hexagonal phase, H2). Our results reveal that a binding ratio of 1 Ca2+ per 8 DOPG is sufficient for the formation of the H2 phase. At 50°C a direct transition from the vesicles to the H2 phase was observed, whereas at ambient temperature (20°C) a short lived intermediate phase (possibly the cubic Pn3m phase) coexisting with the H2 phase was detected.Conclusions/SignificanceThe strong binding of the divalent cations to the negatively charged DOPG molecules enhances the negative spontaneous curvature of the monolayers and causes a rapid collapsing of the vesicles. The rapid loss of the bilayer stability and the reorganization of the lipid molecules within ms support the argument that the transition mechanism is based on a leaky fusion of the vesicles.

Highlights

  • Self-assembled nanostructures play an important role in cell life

  • Our findings indicate that the impact of Ca2+ ions on the spontaneous monolayer curvature is higher at 50uC, since for the given time-resolution of 100 ms no intermediate phase could be detected during the La-H2 phase transition

  • In our present study, we carried out stopped-flow experiments combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring in-situ the structural transitions in DOPG/MO-based vesicles induced by rapidly added Ca2+ solutions

Read more

Summary

Introduction

Self-assembled nanostructures play an important role in cell life. We note that under realistic circumstances, the structural transitions taking place in cell life or any model system are often different from those observed under equilibrium conditions [9,10,12,13]. Awad et al [1] reported on the Ca2+-induced transitions of dioleoyl-phosphatidylglycerol (DOPG)/monoolein (MO) vesicles to bicontinuous cubic phases at equilibrium conditions. The combination of rapid mixing and time-resolved synchrotron small-angle X-ray scattering (SAXS) was applied for the in-situ investigations of fast structural transitions of diluted DOPG/MO vesicles into well-ordered nanostructures by the addition of low concentrated Ca2+ solutions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.