Abstract

Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.