Abstract

In this study, two chemical bean seed hardening methods were used to investigate the changes in cooking behavior associated with Ca2+ transport and phytate hydrolysis to better understand their role in the pectin-cation-phytate hypothesis. The texture evolution of fresh and hardened red kidney beans was evaluated, hardening being induced by soaking or in a CaCl2 solution (0.01 M, 0.05 M, 0.1 M) or sodium acetate buffer (0.1 M, pH 4.4, 41 °C). The beans soaked in a CaCl2 solution at higher concentrations or in sodium acetate buffer for a longer time exhibited a delayed cooking behavior. This study also explored the bio-chemical changes (calcium content in different bean substructures, phytate content and the pectin degree of methylesterification (DM) in the cotyledons) occurring in the beans during chemical hardening and cooking. The Ca2+ concentrations in the whole beans and cotyledons of beans soaked and cooked in CaCl2 solutions significantly increased while inositol hexaphosphate IP6 content showed no significant changes. This indicates that the delayed texture drop in this case results from the influx of exogenous Ca2+ in the cotyledons and seed coats during cooking while the IP6 was not hydrolyzed and did not release endogenous Ca2+. For beans soaked in sodium acetate buffer, phytate profiling showed increased hydrolysis of IP6 with longer soaking time, suggesting the migration of endogenous Ca2+ released from phytate hydrolysis contributing to the delayed cooking of these beans. These results indicate that both an exogenous Ca2+ influx during soaking and cooking and an endogenous Ca2+ replacement resulting from phytate hydrolysis can play an important role in the hardening of beans. In neither of the cases, a significant change in pectin DM was observed during chemical hardening, therefore limiting the delayed cooking to the role of Ca2+ transport. The outcome of both cases is inline with the basic principles of the pectin-cation-phytate hypothesis whereby pectin DM changes are hardly involved and different mechanisms of release/transport are involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.