Abstract

Skeletal muscle fibers enzymatically dissociated from adult mouse flexor digitorum brevis muscles were maintained in culture for up to 8 days. After various times in culture, fibers were loaded with fura 2, and Ca2+ transients for trains of 1, 5, and 10 action potentials (100 Hz) triggered by external electrical stimulation were calculated from fluorescence ratio records corrected for noninstantaneous reaction of fura 2 with Ca2+. The decay rate constants of Ca2+ transients decreased with increasing stimulation duration, indicating a slowing of the Ca(2+)-removal properties with increased stimulation duration. After 6 days in culture, Ca2+ decay rate constants decreased dramatically for all stimulation durations and the differences in decay rate constants among 1, 5, and 10 pulses became smaller. Intracellular parvalbumin content measured by single-fiber immunofluorescence decreased with time in culture in parallel with the decrease in the decay rate constant of Ca2+ transients. Our results suggest that there is a correlation between parvalbumin content and the decay rate constant of the Ca2+ transient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.