Abstract
Calcium transport is essential for bivalves to be able to build and maintain their shells. Ionized calcium (Ca2+) is taken up from the environment and eventually transported through the outer mantle epithelium (OME) to the shell growth area. However, the mechanisms behind this process are poorly understood. The objective of the present study was to characterize the Ca2+ transfer performed by the OME of the Pacific oyster, Crassostrea gigas, as well as to develop an Ussing chamber technique for the functional assessment of transport activities in epithelia of marine bivalves. Kinetic studies revealed that the Ca2+ transfer across the OME consists of one saturable and one linear component, of which the saturable component fits best to Michaelis-Menten kinetics and is characterized by a Km of 6.2 mM and a Vmax of 3.3 nM min-1 The transcellular transfer of Ca2+ accounts for approximately 60% of the total Ca2+ transfer across the OME of C. gigas at environmental Ca2+ concentrations. The use of the pharmacological inhibitors: verapamil, ouabain and caloxin 1a1 revealed that voltage-gated Ca2+-channels, plasma-membrane Ca2+-ATPase and Na+/Ca2+-exchanger all participate in the transcellular Ca2+ transfer across the OME and a model for this Ca2+ transfer is presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.