Abstract

The Ca(2+)-switch technique was used to investigate the nature of the barrier governing (paracellular) permeability across the junctions of "native" rabbit esophageal epithelium. This was done by mounting esophageal epithelium in Ussing chambers to monitor transepithelial electrical resistance (R(T)), a marker of junctional permeability. When exposed to Ca(2+)-free Ringer solutions containing EDTA, R(T) declined approximately 35% below baseline over 2 h, and this decline reversed within 2 h by restoration of (1.2 mM) Ca(2+)-containing, normal Ringer solution ("Ca(2+)-switch technique"). Junctional resealing, i.e., increased R(T) on Ca(2+) replacement, was assessed by the Ca(2+)-switch technique and shown to be 1) specific for Ca(2+), with only Mn(2+) among substituted divalent cations yielding partial resealing; 2) a function of extracellular Ca(2+) levels because maneuvers (BAPTA/AM or A23187 exposure) to alter intracellular Ca(2+) had no effect; 3) dose dependent, requiring as a minimum > or =0.5 mM Ca(2+) and 1.2 mM Ca(2+) for optimization; and 4) independent of protein synthesis because it was not inhibited by cycloheximide. Resealing was also inhibited by luminal antibodies or synthetic peptides to the extracellular domain of E-cadherin. Immunohistochemistry revealed E-cadherin within all layers of stratum corneum in Ca(2+)-free but not Ca(2+)-containing solution. The present investigation documents, using the Ca(2+)-switch technique, that esophageal epithelial junctions contain a major Ca(2+)-dependent component and that this component reflects adhesion between the extracellular domains of E-cadherin containing a histidine-alanine-valine recognition sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call