Abstract

Background and aimHigh-fat diet (HFD) triggers obesity-related metabolic diseases like non-alcoholic fatty liver diseases (NAFLD). Calcium supplementation is known to have an anti-obesity effect. However, the effect of calcium supplementation has not been evaluated so far in context to hepatic functions on exposure to HFD. The goal of the present study was to investigate the role of calcium supplementation on hepatic function and other physiological markers in HFD induced NAFLD rats. Experimental procedure18 male Wistar rats were divided into two groups; first group considered control group (n = 6) for the entire treatment period and the second group (n = 12) fed with HFD for 6 weeks to induce NAFLD model and then sub-divided into two groups (n = 6 rats); one group received HFD and other group received 1.0 gm CaCO3/100 gm HFD for 30 days. After treatment, all animals were euthanized to collect the blood and liver for biochemical, enzymatic, oxidative, anti-oxidant, western blot and histological study. Results and conclusionCalcium supplementation significantly improved the anthropometric parameters and decreases the level of serum cholesterol, triglyceride, FFA and hepatic enzymes. Calcium supplementation significantly down-regulated the hepatic PPAR-γ mediated FAS activity, hepatic lipid accumulation, oxidative stress and restored the activities of antioxidant enzyme which further prevented the stimulation of pro-inflammatory response. Calcium supplementation also increases the hepatic protein expression of phosphorylated AMP-activated protein kinase. So, calcium supplementation showed a hepatoprotective effect during NAFLD by downregulating the oxidative induced inflammatory response stimulated by hepatic lipogenesis activity and subsequent lipid accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.