Abstract
Dietary calcium has been inversely associated with body fat and energy balance. The main scope of this study has been to assess the potential contribution of gut microbiota on energy regulation mediated by calcium. Gut microbiota in C57BL/6J mice receiving calcium supplementation under a high-fat (HF) diet were analysed by PCR and their relationships with host metabolic parameters were determined. Calcium conferred a prebiotic-like effect on gut microbiota, and animals presented lower plasmatic endotoxin levels, increased expression of angiopoietin-like 4 in intestine and lower hepatic lipid content, although increased expression of stress markers in adipose tissue and of inflammation in liver was also found. To determine whether slimming effects could be transferred to obese mice, a faecal microbial transplant (FMT) was carried out, showing that host bacteria grown under a HF diet could not be superseded by those from calcium-fed animals. Therefore, FMT was not able to transfer the beneficial effects of calcium. In conclusion, calcium modulated gut microbiota in a prebiotic manner, establishing a host cross-talk and promoting a healthier metabolic profile. However, lack of effectiveness of FMT suggests the need of further appropriate dietary factors in addition to the bacteria per se.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.