Abstract

Obesity is a major health problem worldwide as it can lead to high blood pressure, heart disease, stroke, diabetes, and insulin resistance. The prevalence of overweight and obesity is increasing worldwide across different age groups. There is evidence of an inverse relationship between calcium intake and body weight. The clinical relevance of a small reduction in body weight has been questioned. However, at a population level, a small effect could mitigate the observed global trends. To assess the effects of calcium supplementation on weight loss in individuals living with overweight or obesity. We searched CENTRAL, MEDLINE, Embase, LILACS (Latin American and Caribbean Health Science Information database), and two clinical trials registries. The date of the last search of all databases (except Embase) was 10 May 2023. No language restrictions were applied. We included randomised controlled trials evaluating the effect of calcium in participants with overweight or obesity of any age or gender. We excluded studies in participants with absorption problems. We included studies of any dose with a minimum duration of two months. We included the following comparisons: calcium supplementation versus placebo, calcium-fortified food or beverage versus placebo, or calcium-fortified food or beverage versus non-calcium-fortified food or beverage. We excluded studies that evaluated the effect of calcium and vitamin D or mixed minerals compared to placebo. We used standard methodological procedures expected by Cochrane. Our primary outcomes were body weight, health-related quality of life, and adverse events. Our secondary outcomes were anthropometric measures other than body weight, all-cause mortality, and morbidity. We found 18 studies that evaluated the effect of calcium compared to placebo or control, with a total of 1873 randomised participants (950 participants in the calcium supplementation groups and 923 in the control groups). All included studies gave oral calcium supplementation as the intervention. We did not find any studies evaluating calcium-fortified foods. We excluded 38 studies, identified four ongoing studies, and listed one study as 'awaiting classification'. Sixteen studies compared calcium supplementation to placebo; two studies compared different doses of calcium supplementation. Doses ranged from very low (0.162 g of calcium/day) to high (1.5 g of calcium/day). Most studies were performed in the USA and Iran, lasted less than six months, and included only women. Low-certainty evidence suggests that calcium supplementation compared to placebo or control may result in little to no difference in body weight (mean difference (MD) -0.15 kg, 95% confidence interval (CI) -0.55 to 0.24; P = 0.45, I2 = 46%; 17 studies, 1317 participants; low-certainty evidence). We downgraded the certainty of the evidence by two levels for risk of bias and heterogeneity. None of the included studies reported health-related quality of life, all-cause mortality, or morbidity/complications as outcomes. Only five studies assessed or reported adverse events. Low-certainty evidence suggests a low frequency of adverse events, with no clear difference between intervention and control groups. Moderate-certainty evidence shows that calcium supplementation compared to placebo or control probably results in a small reduction in body mass index (BMI) (MD -0.18 kg/m2,95% CI -0.22 to -0.13; P < 0.001, I2 = 0%; 9 studies, 731 participants) and waist circumference (MD -0.51 cm, 95% CI -0.72 to -0.29; P < 0.001, I2 = 0%; 6 studies, 273 participants). Low-certainty evidence suggests that calcium supplementation compared to placebo or control may result in a small reduction in body fat mass (MD -0.34 kg, 95% CI -0.73 to 0.05; P < 0.001, I2 = 97%; 12 studies, 812 participants). Calcium supplementation for eight weeks to 24 months may result in little to no difference in body weight in people with overweight or obesity. The current evidence is of low certainty, due to concerns regarding risk of bias and statistical heterogeneity. We found that the degree of heterogeneity might be partly explained by calcium dosage, the presence or absence of a co-intervention, and whether an intention-to-treat analysis was pursued. While our analyses suggest that calcium supplementation may result in a small reduction in BMI, waist circumference, and fat mass, this evidence is of low to moderate certainty. Future studies could investigate the effect of calcium supplementation on lean body mass to explore if there is a change in body composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call