Abstract
An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3 × 4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2 PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P < 0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P < 0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P < 0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P < 0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%–0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.