Abstract

AbstractA cementitious backfill has been proposed in many geological disposal concepts for intermediate-level waste and low-level waste in the UK and elsewhere. In this paper, the main features of the chemical evolution of backfill and the associated changes in the near-field pH are illustrated with results from recent work. For example, interaction of the groundwater with calcium silicate hydrate (C-S-H) phases in a backfill is expected to play an important role in the long-term pH-buffering behaviour. Existing experimental data for the dissolution of C-S-H gels are compared with recent experimental results from leach tests on gels of a lower calcium to silicon ratio (C/S) to provide a consistent set of data across the full C/S range. The results confirm that a congruent dissolution point around C/S = 0.8 is approached by leaching from below (i.e. for gels with 0.29 < C/S < 0.8), as well as from above, as reported elsewhere. In addition, a spreadsheet model has been developed to calculate the volume of backfill required at the vault scale to meet specified pH performance criteria. This model includes the major reactions of the backfill with the groundwater, waste encapsulants and waste components. It can also consider the effects of specific waste packages on local pH performance to allow comparison with the vault-scale calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call