Abstract

Ca(2+) is a ubiquitous intracellular messenger in malaria parasites with important functions in asexual blood stages responsible for malaria symptoms, the preceding liver-stage infection and transmission through the mosquito. Intracellular messengers amplify signals by binding to effector molecules that trigger physiological changes. The characterisation of some Ca(2+) effector proteins has begun to provide insights into the vast range of biological processes controlled by Ca(2+) signalling in malaria parasites, including host cell egress and invasion, protein secretion, motility and cell cycle regulation. Despite the importance of Ca(2+) signalling during the life cycle of malaria parasites, little is known about Ca(2+) homeostasis. Recent findings highlighted that upstream of stage-specific Ca(2+) effectors is a conserved interplay between second messengers to control critical intracellular Ca(2+) signals throughout the life cycle. The identification of the molecular mechanisms integrating stage-transcending mechanisms of Ca(2+) homeostasis in a network of stage-specific regulator and effector pathways now represents a major challenge for a meaningful understanding of Ca(2+) signalling in malaria parasites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.