Abstract

Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.